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Abstract-A boundary element formulation for geometrical nonlinear problems is presented, which
is applicable for arbitrary constitutive equations based on the concept of hyperelastic response
relative to an intermediate configuration. This includes purely hyperelastic problems at large elastic
strains. In contrast to other formulations, the Total-Lagrange framework employed in this work
significantly increases the numerical efficiency as the system matrices remain constant during the
incremental solution and have to be computed only once. A nonlinear set of equations with an
identical structure for both boundary and internal unknowns is derived. The basic unknowns are
displacement gradients, which are calculated via integral equations and not by differentiation of the
shape functions. The formulation can be consistently linearised to allow for the implementation of
efficient iteration schemes using gradients, e.g. the Newton-Raphson scheme.

I. INTRODUCTION

The boundary element method (BEM) is now well established for geometrically linear
problems for both elastic and inelastic material behaviour. As the presence of nonlinearities
accounts for an additional domain integral, the term "field boundary element method"
(FBEM) is frequently used in this context. Only a few papers can be found in the literature
which are concerned with the application of FBEM to geometrical and material nonlinear
problems [see e.g. Chandra and Mukherjee (1986a,b), Chen and Ji (1989, 1990), Jin et al.
(1988, 1989), Mukherjee and Chandra (1984), Novati and Brebbia (1982), Okada et al.
(1988,1989, 1990) and Tran-Cong et al. (1990)]. Most ofthe approaches presented in these
papers are based on constitutive equations in rate form. t As a consequence, the whole system
of FBEM equations takes on a rate form and must be time-integrated using incrementally
objective algorithms. This recommends explicit integration schemes, which react quite
sensitively with respect to the increment size. The more complicated formulation of implicit
schemes or equilibrium iterations is mostly avoided and can only be found in Jin et al.
(1988, 1989) to the knowledge of the authors. As an additional drawback for the derivation
and implementation, such constitutive equations have to be formulated in terms ofobjective
time derivatives of conjugate stress and strain measures.

The elastic part of deformation is usually assumed to be determined by a hypoelastic
law with a constant and isotropic elasticity tensor. This is not compatible with reversible
(hyperelastic) material behaviour in any configuration except the initial configuration [see
e.g. Simo (1984)]. Nevertheless such hypoelastic laws are taken as a basis for FBEM
approaches in an Updated-Lagrange framework for various configurations. Therefore the
validity of such formulations is restricted to small elastic strains, whereas finite rotations
are admissible as orthogonal transformations do not affect an isotropic elasticity tensor.

The application of an Updated-Lagrange framework is frequently enforced either by
approximations or linearisations, which are admissible for small strain increments between
two related configurations, or by a derivation based on an analogy of Betti's reciprocal
theorem for small strain increments superimposed onto a finitely deformed configuration.
The main drawback of this procedure is the fact that the system matrices have to be re
computed after each load increment if the configuration has changed significantly. This is

t Exceptions are Tran-Cong et al. (1990) using hyperelastic constitutive equations and Novati and Brebbia
(1982) using Saint-Venant's law, which is not polyconvex and therefore restricted to small elastic strains.
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numerically much more time-consuming than the re-computation of the stiffness-matrix in
FEM.

Some of these drawbacks can be overcome by the proposed approach. The main
point is the application of constitutive equations based on the concept of an intermediate
configuration. This enables the decomposition of the set of constitutive equations into a
simple hyperelastic relation for the stress tensor and more complicated evolution equations
for the intermediate configuration and further internal variables. Such constitutive models
are well justified from a thermodynamic point of view [see e.g. Coleman and Gurtin (1967),
Lubliner (1984») and are widely used in FEM [see e.g. Besdo (1981), Simo (1988a,b), Simo
and Miehe (1992), Miehe et al. (1992) and Eterovic and Bathe (1990)]. The stresses can be
calculated directly from kinematic quantities, and the problem can be regarded as strain
driven. This allows for a time-independent formulation on a global level; whereas the
integration of the evolution equations is performed on a nodal level.

It will be shown that such constitutive models, covering elastoplastic, viscoplastic and
thermo-elastoplastic problems [see e.g. Simo (1988a,b), Simo and Miehe (1992), Miehe and
Stein (1992») are suitable for an implementation in FBEM schemes. This includes (as a
special case) the efficient treatment ofhyperelasticity at finite strains, even for incompressible
materials [see Foerster and Kuhn (1993)]. It deserves mentioning that no approximations
concerning the basic equations are necessary to establish a Total-Lagrange-FBEM for
mulation, which is properly based on finite strain continuum mechanics. The derivation
starts from the weak form of the balance of linear momentum. Suitably defined nonlinear
terms are separated after the first integration by parts, giving rise to an additional domain
integral. The remaining terms can undergo the classical BEM-derivation using Kelvin's
fundamental solution. The separation of linear and nonlinear terms is in some sort artificial
but nevertheless exact and leads to a remarkably simple structure of the kernel in the
additional domain integral.

A standard discretisation procedure and some further manipulations finally lead to a
time-independent nonlinear set of equations witli the displacement gradients at the nodes
of all internal cells as basic unknowns. The structure of the set of nonlinear equations is
identical for both boundary and internal values of the displacement gradients. It has to be
solved in a combination with the integration algorithms of the evolution equations. In
contrast to other approaches which differentiate the shape functions as in FEM, the
displacement gradients are computed here via integral equations. The boundary tractions
and the boundary or internal displacements can be computed in a post-processing procedure
once the displacement gradients have been determined. The nonlinear set of equations is
suitable for consistent linearisation, an important feature with regard to the application of
efficient iterative solution techniques. The linearisation is quite simple and requires little
effort from a computational point ofview. It involves the computation ofconsistent material
tangent moduli analogous to the proceeding in FEM.

In this approach the system matrices remain constant and the linearisation procedure
only affects simple nonlinear functions on a nodal level. This is in contrast to FEM
formulations, where the discretised integral representation of the tangent stiffness matrix
contains the material tangent moduli due to the underlying variational structure. As a
consequence the re-computation of the stiffness matrix requires a complete domain inte
gration in each iteration stept which can be completely avoided in the present formulation.

2. GOVERNING EQUATIONS

For the sake of simplicity the notation of classical tensor analysis is adopted. The
concept of manifolds, set up for example by Marsden and Hughes (1983) in the context of
finite elasticity and widely adopted in the literature, has no significant advantage for our
purposes. As the problem is treated in a Total-Lagrange framework, the basic equations
will be mainly given in a material formulation.

t Update schemes (e.g. BFGS, DFP) or modified Newton-Raphson schemes can overcome this problem in
part.
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Fig. I. Configurations, displacements and deformation gradients.
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The deformation ofa body from the initial to the current configuration can be described
as an invertible mapping x = 4>(X, t), relating the coordinates X and x of a material point
in the initial and the current configuration, respectively, at a certain time t (see Fig. I). The
linearisation of this mapping

(1)

is the deformation gradient, which is a two-point tensor. It can be used to define Lagrangian
tensors, e.g. the right Cauchy-Green tensor

and the Green strain tensor

C = FT'F,

E = HC-G].

(2)

(3)

In eqn (l) and eqn (3) ga and GA denote the contravariant and covariant basis in the current
and initial configuration, respectively, and G the metric tensor in the initial configuration.
Alternatively the deformation can be described in terms of displacements U(X, t) defined
as a material vector field assigned to the points X and x in the cartesian embedding space.
F, C and E can be expressed via the material displacement gradient H = VU e.g.

The material balance of linear momentum takes the following local

DIV[F'S]+B' p = 0,

or global

(4)

(5)
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(6)

form and is written in terms of the second Piola-Kirchhoff stress tensor S, the boundary
traction vectorT, the volume force density B' p and the unit outward normal N, each defined
in the initial configuration. The balance of angular momentum requires the symmetry of
the second Piola Kirchhoff stress tensor. The relations between Sand T and their spatial
counterparts (f (Cauchy stress tensor) and t = (f' n (Cauchy traction vector) defined in the
current configuration are

and

S = JF- 1 '(f'F- T with J = detF,

da
T = (H+G) 'S'N = tdA'

(7)

(8)

where the latter equation can be derived from Nanson's formula.
The introduction of an intermediate configuration in the sense of Lee (1969), obtained

by a local relaxation to a stress-free state at fixed internal variables, leads to a local
multiplicative decomposition

F = Fe'FP, (9)

of the deformation gradient into an elastic and plastict part. The decomposition is not
unique in the sense that Fe and FP are determined up to an orthogonal tensor only, whereas
the plastic right Cauchy-Green tensor

(10)

is unique and objective. Thermodynamic considerations and the requirement of objectivity
finally lead to a dependence of the free energy t/J from C, CP and further internal variables
IY. and to the relation

(II)

for the second Piola-Kirchhoff stress tensort [see e.g. Lubliner (1984, 1987), Coleman
and Gurtin (1967) or Simo (l988a,b) for a detailed discussion]. This constitutive equation
is accomplished by a set of evolution equations

CP = ff(C,CP,a:,C)

~ = <§(C, CP, a:, C), (12)

for the plastic right Cauchy-Green tensor and the internal variables.
The algorithmic integration of the evolution equations and the computation of the

consistent material tangent moduli depend on the explicit structure of eqn (12) and affect
the efficiency of the whole scheme. In Simo (1988a,b) or Simo and Miehe (1992) a consti
tutive model based on a Neo-Hookean hyperelastic relation, the von Mises yield condition
and the principle of maximum plastic dissipation is proposed. It is widely used in FEM
approaches as-in a spatial formulation-it allows for the derivation of radial-return
algorithms analogous to the geometrical linear case and the closed-form representation of

t In a more general sense it should be called "inelastic".
t The dependence on the temperature can be dropped in a purely mechanical theory.
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the consistent material tangent moduli. In order to use these efficient algorithms in a Total
Lagrange approach, the relevant (nodal) quantities have to be transformed via push
forward and pull-back operations from the initial to the current configuration and vice
versa. The computational effort for this procedure is irrelevant in comparison with the
iteration scheme as a whole. Alternatively, less efficient integration algorithms for arbitrary
evolution equations can be used, which can be directly formulated in the initial configuration
[e.g. cutting-plane or closest-point-projection algorithm, see Simo (1988a,b) and the ref
erences herein]. Further reading on this topic as well as on different approaches can be
found for example in Besdo (1981), Eterovic and Bathe (1990), Lubliner (1984), Haupt
(1985) and Miehe and Stein (1992).

3. FIELD BOUNDARY ELEMENT FORMULATION

For the derivation of a FBEM formulation it is necessary to express the relevant
equations of the previous section in the following modified form

E = ~[HT+H]+~HT'H

0= DIV[(G+H)'S]+B'p

S = C:E+sn. (13)

These equations can be obtained from eqns (3), (5) and (I I) substituting the Green strain
tensor by the material displacement gradient and formally splitting eqn (11) into linear and
nonlinear parts. The latter involves the definition of a constant elasticity tensor

(14)

resulting from the linearisation of eqn (II) for the undeformed state. The definition

(15)

of the nonlinear stress tensor is suitably chosen to ensure the equivalence of eqn (l3c) and
the hyperelastic relation eqn (11). The more or less artificially defined "nonlinear stress
tensor" sn will be removed from the formulation later on. The elasticity tensor Cis assumed
to be isotropic and homogeneous and can be written as

(16)

in terms of the shear modulus G and the Poisson ratio v. If the material is inhomogeneous
or initially anisotropic (i.e. l/J is not an isotropic tensor function of C) a suitable averaging
procedure should be used to define Chomogeneous and isotropic,t whereas the inhomo
geneity and initial anisotropy of the real material are shifted to the nonlinear stress tensor.
Material anisotropy arising from inelastic deformations is included in the nonlinear stress
tensor, too.

Equations (l3a--e) allow for the separation of nonlinear terms in such a way that the
remaining terms have the same structure as the corresponding ones in linear elasticity.
Therefore the well-known fundamental solutions of linear elasticity can be applied directly.

In order to keep the notation of the previous section, the relevant integral equations
will be derived in arbitrary curvilinear coordinates in the initial configuration, although this
is not necessary in general. The starting point is the weak form

t Alternatively, fundamental solutions for anisotropic linear elasticity could be employed, see e.g. Vogel
and Rizzo (1973).
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10- {DIV[(H+G)-S]+B-p} dO = 0, (17)

of the balance of linear momentum eqn (13b). The test function is chosen to be Kelvin's
fundamental solution

_ _. . I
U = B-U with U = 16n(l-v)Gr {(3-4v)G+Vr@Vr},

of Navier's equation of linear elasticity

- 1 - 1 n
DIV(VU) + 1-2v V(DIVU) + GuJ(X,~) = 0

(18)

(19)

for a unit load in infinite space, represented by the product of Dirac's function J(X, ~) and
a constant vector B. The material parameters G and v in eqns (18) and (19) correspond to
those used in eqn (16). The gradients (covariant derivatives) of the displacement field

(20)

with respect to the field point and the source point coordinates, respectively, and the stresses
and boundary tractions

- - .t = C:vO, T = I>N = B-T (21)

of the fundamental solution can be derived from 0. In eqn (18) r denotes the Euclidian
norm ofthe vector associated to X and ~ in the cartesian embedding space, i.e. the "distance"
between X and ~. For Cartesian coordinates eqn (18) is reducible to the standard component
representation. After a first integration by parts eqn (17) takes the form

0= Ir0 -(G+H) -SoN dr-1vo: [(G+H) 'S] dO+10 -B- p dO. (22)

The last domain integral containing the volume forces will not be considered in the follow
ing. t Inserting the definition of the traction vector eqn (8) into the boundary integral of
eqn (22), one obtains

L0· (G+H)-S-N dr = LO-T dr, (23)

as its final form. Now the nonlinear terms in the remaining domain integral ofeqn (22) can be
separated using eqns (13a-c), causing additional domain integrals. First the transformation

1VO:[(G+H)-S]dO=1vU:SdO+1VO:(H'S) dO, (24)

shifts the nonlinear part of the balance of linear momentum to the second domain integral
on the right-hand side. Next the nonlinear stresses are separated via

t For conservative volume forces it can be transformed into a boundary integral, see for example, Stippes
and Rizzo (1977).
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LvU: S dO = LvU:C: E dO+ LVU: sn dO.

Separating the quadratic term of the Green strain tensor one can derive

1783

(25)

(26)

for the first domain integral on the right-hand side ofeqn (25), using the symmetry properties
of C due to its definition as second order derivative of the free energy [eqn (14)]. The
remaining domain integral can be integrated by parts again to obtain

Lt:HdO = LU'Tdr-LU'DIV(t) dO

= Ir U' T dr + LU· B<5(X, ~) dO, (27)

in which the balance of linear momentum of the fundamental solution was inserted. For
~ EO the last domain integral ofeqn (27) is reducible to U(~) . B. After the insertion of eqns
(23)-(27) into eqn (22) and the substitution of the displacements, displacement gradients
and boundary tractions of the fundamental solution as given in eqns (18), (20) and (21),
one obtains the generalized Somigliana identity

U(~) = Ir [U(X,~)· T(X) - T(X,~)· U(X)] dr + LU(X,~)· B(X)p(X) dO

-LVU(X,~) :NI(X) dO, (28)

for this problem. The three additional domain integrals were summed up in one defining
the nonlinear expression

NI = H'S+~C: [HT'H]+sn = [H+G]'S-C:H, (29)

where the nonlinear stress tensor is removed from NI and from the entire formulation by
inserting its definition eqn (15). In the limiting case of small displacement gradients and in
the absence of plastic strains NI converges to zero of a higher order than the other kernels.
In this case the additional domain integral vanishes, and the classical boundary integral
equation for linear elasticity is recovered.

The standard limiting process ~ --+ r applied to eqn (28) finally provides the generalized
boundary integral equation

C(~) . U(~) = L[U(X,~) ·T(X)-T(X,~)· U(X)] dr + LU(X,~)· B(X)p(X) dO

-Lvu (X, ~) : NI(X) dO (30)

with a second order tensor Cdepending on the shape of r at ~. At this stage the functional
dependencies of NI have to be discussed. Taking into account eqn (11) the nonlinear
expression NI takes the form
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NI(H,S(C, CP,rx)) = [H+G] 'S(C,CP,rx)-C: H. (31)

The right Cauchy-Green tensor can be expressed directly in terms of H, see eqn (4). The
plastic right Cauchy-Green tensor CP and the internal variables rx enter the formulation
through the constitutive equation for the second Piola-Kirchhoff stress tensor.

The direct and indirect dependence of Nt on H requires a representation formula for
the displacement gradient. For ~ E Q it can be easily obtained in an integral form by
covariant differentiation of eqn (28) with respect to the source point coordinates ~. Using
the standard procedure, for example that given in Brebbia et al. (1984), one obtains

H(~) = V~U(~) = L[V~U(X'~)'T(X)-V~f(X,~)'U(X)] dr

+i V~U(X'~)'B(X)p(X)dQ- i V~VU(X,~):NI(X)dQ-F:NI(~), (32)

with a free term F, explicitly given for example in Okada et al. (1989). The evaluation of
the additional domain integral in eqns (30) and (32) in a discretised form usually requires
the values ofNI and H in the domain Q and on the boundary r, respectively.t The limiting
process ~ -7 r applied to eqn (32) leads to a hypersingular boundary integral equation. The
treatment of such integral equations is discussed, for example in Hildenbrand and Kuhn
(1988), Bialecki et al. (1993) or Guiggiani et al. (1992) and will not be considered here.

4. DISCRETISATION

For the discretisation of eqns (30) and (32) the usual standard procedures are applied.
The introduction of shape functions <l> and nodal values allows for the discretisation, for
example, of the boundary integral equation

C(~) • U(~) = it! k±\ L'd U(~, X(1J))' [Tuk)$(k) (1J)]J(X, 1J) dr(1J)

-it\ kt L", f(~, X(1J»' [UUk)<D(kl(1J)]J(X, 1J) dr(1J)

" m r h

+ i~1 l~! Jn
u

, U(~, X«())· [pBUi)<l>(I) (q)]J(X, 0 dQ(O

-Jl itl iu} VU(~, X(m : [NIUi)<D(I) (1J)]J(X, () dQ(O. (33)

The boundary tractions T and displacements U are approximated in r boundary elements
with n(r) nodes each, and the nonlinear term Nt in s internal cells with m(s) nodes each.
The standard collocation, Galerkin or least-square techniques applied to the discretised
integral equations then provide the matrix equations

and

Au = Bt+b-En-7Ax = By+b-En,

h = Gy+fix+b-E'n.

(34)

(35)

The vectors u, t, y and x contain the values of the boundary displacements and tractions

t The need to determine displacement gradients on the boundary can be avoided using constant or dis
continuous elements.
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and the known and unknown boundary values, respectively, for the nodes of boundary
elements. The vectors hand n, on the other hand, contain the values of Hand Nl for the
nodes of the internal cells. Inserting eqn (34b) into eqn (35) a nonlinear set of equations

(I)

0= f = h+En- h ().),

with a residual vector f can be obtained, where

is a constant matrix and

(36)

(37)

(38)

is the vector of "linear" displacement gradients, which can be directly computed from the
prescribed boundary values and volume forces once the system matrices have been
computed. It represents the "external loading" in eqn (38) as a function of a loading
parameter A.

5. CONSISTENT LINEARISATION AND ITERATIVE SOLUTION

The path-dependence of inelastic problems requires an incremental solution strategy
for eqn (36) taking into account the integration algorithms of the evolution equations. Even
for hyperelastic problems an incremental approach in the sense of a path-following method
is frequently required due to the strong nonlinearity of the problem, i.e. convergence is
usually not obtained for the entire loading applied in one increment.t The situation in the
typical (k+ I)st load increment may be summarized as follows:

One has to determine hk
+ 1 as the solution of

(39)

in which ck+I is a function of hk+1 and the components of cPk
+ I and rx.k+ l result from time

discrete integration algorithms of the evolution equations symbolically written as

cpk+ I = j;(Ck+ J, (C, CP, elY)

rx,k+ 1 = -§(Ck+ 1, (c, CP, CC)k). (40)

The integration starts from known nodal values (C, CP, rx.)k at the end of the kth load
increment to avoid influences of the iteration path. The vector h(l)k+ l represents the new
loading in the (k+ I)st load increment.

Most existing FBEM approaches use fixed point iteration schemes not requiring
gradients. In some cases this is enforced by the fact that both boundary integral equations
and Somigliana-like identities for internal points are used parallel in an iterative procedure
instead of constructing a set of equations with a unique structure. Fixed point iterations or
similar schemes can be very efficient for moderately nonlinear problems, e.g. small strain
elastoplasticity, whereas applied to highly nonlinear ones, they exhibit poor convergence
properties or even fail to converge. Such problems are reported e.g. in Tran-Cong et al.
(1990) in the context of a FBEM formulation for hyperelasticity at finite strains. The
application of advanced iteration schemes is recommended in such cases. This means that
the linearisation of the nonlinear problem with respect to the basic unknowns is necessary.

t Bifurcation or instability problems require incremental procedures, too, but will not be considered here.

$AS 31: 12/13-K
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In this formulation the basic unknowns are the nodal displacement gradients sum
marized in h. The Jacobi matrixt is therefore given by

df _ do
J = dh = 1+ E dh . (41 )

The matrix do/dh is sparse, as a nodal value of Nl only depends from the value of U at the
same node. Arranging the nodal components in hand 0 in the same manner, one arrives at
the block diagonal structure

do . [dNl l dNlnJ
dh = Dmg dU!"'" dUn (42)

in which the entries (dNl/dU); have the dimension 9 x 9 (3D) or 4 x 4 (2D) and contain the
components of

dNI
AB

A BD A A ds
EB

~ ABGD
dHcD = [) cS + [H E+[) E] dHcD -C GGc, (43)

The block diagonal structure of do/dh reduces substantially the numerical effort for the
evaluation of eqn (41). After substituting the relation

(44)

into eqn (43), it finally takes the form

with the consistent material tangent moduli Cep
• With these results at hand, the Newton~

Raphson algorithm for the (k + 1)st load increment:

Repeat

1) J~+ 1 = [df/dh]~+ 1

2) h~tl = h~+I_[J~+I]-lf~+l

3) C~~\' = ff(h~t:,(h,cP,(X)k)

4) (X~t 1 = ,§(h~t :, (h, cP, (X)k)

5) s~tl = 9'((c,cP,(X)~t:)

6) fk+1 =hk+l+E-o(hk+! Sk+1)_h(l)k+1
n+1 n+1 n+1, n+1 (46)

until II f~t III ~ e,
can be formulated as a simple example for iteration schemes using gradients. The steps in
eqn (46) are the following:

1) Computation of the Jacobi matrix following the above scheme.
2) Calculation of an improved guess of the unknowns (displacement gradients).
3) Algorithmic integration of the evolution equation for CP for all nodes.
4) Algorithmic integration of the evolution equation for (X for all nodes.
5) Direct computation of the stress tensors for all nodes via eqn (11).

t The counterpart in FEM is the tangent stiffness matrix.
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6) Evaluation of eqn (36) to determine the new residual vector.

1787

The iteration continues until a suitable norm of the residual vector is reduced to a
certain tolerance.

Step 2 involves the solution of a large system of linear equations, which significantly
accounts for the total computing time. As in FEM, update schemes can be used to overcome
this problem at least in part. The consistent linearisation of eqn (II) for elastoplastic
models with a yield condition provides either the actual elasticity tensor or the consistent
elastoplastic tangent moduli. As the nodal state may change from the elastic $iomain to the
yield surface or vice versa in a certain increment, the actual material response and its
linearisation may not coincide at some nodes. In such situations the Jacobi matrix is not
the correct linearisation of eqn (39) and the use of line-search algorithms in combination
with the Newton-Raphson scheme is highly recommended to ensure convergence.

As a topic of further research solution techniques taking advantage of the diagonal
dominance of the Jacobi matrix (not in a strictly mathematical sense) should be applied,
e.g. iterative equation solvers in Newton-Raphson schemes or suitably adapted conjugate
gradient methods. The application of algorithms to trace instability phenomena (e.g. arc
length methods) seems possible in general and has been successfully implemented and tested
for hyperelastic problems, in which steps 3 and 4 are omitted and the consistent material
tangent moduli in eqns (44) and (45) reduce to the actual elasticity tensor, which is different
from the initial elasticity tensor defined in eqn (14).

6. IMPLEMENTATION AND NUMERICAL RESULTS

The formulation derived above was implemented in the boundary element program
BEAT for two-dimensional problems, covering hyperelasticity and rate-independent associ
ative elastoplasticity with interfaces for various hyperelastic relations and yield conditions.
The constitutive model proposed in Simo (l988a,b) or Simo and Miehe (1992) (including
the efficient algorithms given in these references) was implemented, too. Some additional
features were not described in this papert to ensure the clarity of the derivation, such as

• the easy treatment of hyperelastic materials with internal constraints (e.g. incom
pressibility) without causing locking phenomena like in FEM [see Foerster (1993)],

• the use ofmodified Newton-Raphson and update schemes (e.g. Broyden's rank one
update) for hyperelastic problems to avoid the time-consuming re-factorization of
the Jacobi matrix,

• the development and implementation of different types of line search algorithms to
improve the numerical stability of the iteration scheme, especially for elastoplastic
problems,

• the implementation of the substructuring technique to allow for the efficient treat
ment of bodies consisting of different materials and

• the treatment of nonlinear boundary conditions (e.g. traction vectors prescribed in
the current configuration, pressure boundary conditions and traction vectors rotat
ing with the tangent plane of the boundary) via a minor extension of the algorithm.

The computational examples presented in the following are plain strain problems.
Some hyperelastic problems will be considered to assess the efficiency of the global time
independent FBEM scheme. The interaction of this scheme with the local integration
algorithms of the evolution equations will be discussed on the basis of two elastoplastic
examples.

Two homogeneous deformations (simple shear and uniaxial extension or compression)
of a rectangular plate, consisting of an incompressible rubberlike Mooney-Rivlin material,

t See Foerster (1993) for a detailed derivation.
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Fig. 2. Simple shear and uniaxial extension (compression).

will be considered (see Fig. 2). These deformations are characterized by the deformation
gradients

.~ [: n
l+D 0 0

}'
1

I (with y = tan p) and F= 0 ------. 0 (47)

0
l+D

0 0
'--..-'

Simple shear
Uniaxial extension

with the shearing angel f3 and the engineering strain D. As the deformations are
homogeneous, even a minimum number oflinear boundary elements and constant internal
cells would exactly represent the problem. Here eight linear boundary element and eight
linear triangular cells were used, but coarse or refined meshes of course provided the same
results. The kinematic constraints for both examples are shown in Fig. 2. The loading was
imposed via boundary tractions, which is the more complicated case for the iterative
solution compared with kinematic loading. The constraints on the upper side of the shear
specimen were applied to catch the normal stresses due to the Pointing effect, and the
boundary tractions (obtained from the analytical solution) were prescribed as Cauchy
tractions.t In the simple shear problem any hydrostatic pressure can be superimposed via
suitably chosen boundary tractions on the vertical sides of the specimen, which do not
remain tangential in general. The ranges of deformation (which are not the limiting values)
and the average number of iterations per load increment required by different solution
algorithms are given in Table 1 for 5, 10 and 20 equal load increments.t An extremely

Table I. Average number of iterations for different solution schemes and different numbers
of load increments

Number of load increments
5 10 IS 5 10 IS 5 10 IS

NR 4.0 3.7 3.6 5.2 4.3 4.2 6.8 5.2 4.8
M-NRand BR 28.4 18.9 14.0 18.8 11.8 9.2 X 21.1 14.4
M-NR X 55.9 17.0 X 24.8 16.0 X X 20.5

------

Range of Simple shear Extension Compression
deformation 0.0 <:;; Fl2 <:;; 3.0 1.0 <:;; F 11 <:;; 5.0 1.0 ~ Fll ~ 0.2

NR; Newton-Raphson; M-NR; Modified Newton-Raphson; BR; Broyden rank one
update; X; No convergence.

t This is an additional nonlinearity of the problem, as material traction vectors occur in the integral
equations.

t An adaptive load increment control is recommended for less academic problems to save computing time.



Material nonlinear problems at finite strains

Fig. 3. Hyperelastic beam (discretisation).
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stringent global error tolerance of II f II :::; 1.£-14 was imposed for all load increments,t
partly accounting for the number of iterations given in Table 1. The maximum absolute
difference between the computed nodal deformation gradients and the analytical values is
less than 5.£-8 for all nodes and components. The restriction (0'11-0'22) -YO'12 = 0 for the
components of the Cauchy stress tensor, which is directly related to the Pointing effect for
any incompressible hyperelastic material in simple shear, is preserved within an absolute
tolerance of 6.£-6. The modified Newton-Raphson scheme required one factorization of
the initial Jacobi matrix in each load increment. The Broyden rank one update started from
this factorization. The relative computational efficiency of the different solution schemes
depends strongly on the size of the problem and has not yet been examined in detail. The
low number of load increments and iterations proves the efficiency of both the formulation
and the solution procedures for hyperelastic problems. As a limiting case a Newton
Raphson scheme with an additional line search solved the uniaxial extension problem up
to 400% engineering strain in three load increments with a total of 19 iterations. For
hyperelastic problems the numerical efficiency is significantly improved, if the components
of the initial vector h~+ 1 in the (k+ l)st increment are computed via extrapolation from the
solutions of preceding load increments. This requires an adaptive choice of the increment
size in combination with an error control scheme (the results in Table 1 were obtained
without extrapolation).

The next example is the bending of a hyperelastic beam. The Mooney-Rivlin consti
tutive model for incompressible rubber-like materials was applied here. The boundary
conditions and the discretisation with 76 isoparametric Overhauser-spline elements on the
boundary, 480 linear internal cells and 279 nodes are shown in Fig. 3. At the right vertical
side of the beam a resulting moment was applied by an appropriate distribution of tractions,
which were defined relative to the rotating tangent of the boundary. The deformed con
figuration and contours of relevant components of the Cauchy stress tensor are shown in
Fig. 4. The results are in good agreement with the solution to be expected for beam subjected
to a constant bending moment only. A shift of the neutral axis to the inner radius is
observed. The difference of the length of the neutral axis in the initial and the deformed

Fig. 4. Hyperelastic beam (contours of Cauchy stresses).

t All examples were computed with 64 bit precision.
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Fig. 5. Uniaxial elastoplastic extension.

configuration is 0.5%. The computation required 25 load increments with a total of 141
iterations, where a modified Newton-Raphson scheme with one factorization of the Jacobi
matrix in each load increment was used. The error tolerance was set to II f II ~ I.E-12. It is
worth mentioning again that the entire computation is carried out in the initial configur
ation. The effects of large rotations are correctly reproduced.

Next the uniaxial elastoplastic extension of a plate up to 200% engineering strain
(which is again no limiting point of the algorithm) is examined, using the constitutive model
(Jrflow theory) proposed in Simo (1988a,b) with the isotropic exponential hardening law
and the material data given herein. The shape of the undeformed plate is appropriately
chosen to avoid bifurcation problems. The kinematic boundary conditions and the isotropic
hardening law are shown in Fig. 5. In Table 2 the total number of iterations, the resulting
stresses related to the initial yield stress Yo and the equivalent plastic strain are given for
different numbers ofload increments. The nodal stresses differ less than l.EA Yo from each
other, the equivalent plastic strains less than l.E-7. The solution technique applied here
was the Newton-Raphson scheme. The small number of iterations even for large increments
is due to the consistent linearisation of the problem, i.e. the use of consistent elastoplastic
tangent moduli.

The last example is the extension of a rectangular plate with elliptical notches (alb = 3)
up to 25% engineering strain. The same constitutive model as in the previous example was
used, but a linear hardening law (hardening coefficient: 7% of the bulk modulus) was
applied, which is not a realistic assumption for large e1astoplastic deformations. Using the
realistic exponential hardening law proposed in Simo (l988a,b), the simulation points out
the initiation of a localization process at an early stage of the deformation (5.0-5.5%
engineering strain), which occurs about four boundary elements to the side of the symmetry
line of the notches (see Fig. 6). Such phenomena can not be handled by the present
implementation. The discretisation with 67 isoparametric Overhauser-spline elements on
the boundary, 649 linear internal cells and 359 nodes is shown in Fig. 6. Due to the symmetry
of the specimen only one quarter had to be considered. The problem was solved in 25 equal
load increments with a total of 73 iterations for an error tolerance of II f II ~ I.E-IO by the
Newton-Raphson algorithm with line search. The deformed configuration and contours of
relevant components of the Cauchy stress tensor and the equivalent plastic strain are shown
in Fig. 7.

Table 2. Results for uniaxial elastoplastic extension

Number of load increments
2 4 8 16 32

Iterations 6 10 20 34 64 liS
ulllYo 1.9140 2.1356 2.2160 2.2388 2.2447 2.2468
uI,1 Yo <2.£-8 <2.£-8 <2.£-8 <2.£-8 <2.£-8 <2.£-8
u,,/Yo <5.£-6 <5.£-6 <5.£-6 <5.£-6 <5.£-6 <5.£-6
un/Yo 0.1913 0.6505 0.9007 1.0147 1.0671 1.0920
uv/Yo 1.8259 1.8960 1.9303 1.9416 1.9447 1.9455

fP 0.8376 1.0861 1.2078 1.2486 1.2596 1.2624
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a

Fig. 6. Plate with elliptical notches (discretisation).

7. CONCLUSIONS

In this paper a finite strain FBEM formulation is presented, which is based on a class
of constitutive equations not used in this context so far. It is shown that the concept of
hyperelastic material behaviour relative to the intermediate configuration, covering a wide
range of constitutive models, is especially suitable for an implementation in a FBEM
scheme. It leads to a time-independent formulation on the global level and a remarkably
simple structure of the kernel in the additional domain integral. Through this method the
use of a Total-Lagrange scheme becomes possible, resulting in constant system matrices
and a significant reduction ofcomputing time. The application ofadvanced iterative solution
schemes becomes possible, as the problem can be consistently linearised with little effort
and without requiring any domain integration. In comparison with FEM-formulations,
lower requirements on the discretisation quality can be expected for two reasons. Firstly,
the quantities interpolated within the internal cells are functions ofthe displacement gradient
and not functions of the displacements as in FEM. Secondly, no differentiation of the shape
functions is necessary, as the displacement gradients can be computed via integral equations.

Fig. 7. Plate with elliptical notches (contours of Cauchy stresses and equivalent plastic strain).
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